Real time text localization for Indoor Mobile Robot Navigation
نویسندگان
چکیده
Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. In this paper, a novel two-step text localization method for Indoor Mobile Robot Navigation is introduced. This method is based on morphological operators and machine learning techniques and can be used in real time environments. The proposed method has two steps. At First, a new set of morphological operators is applied with a particular sequence to extract high contrast areas that have high probability of text existence. Using of morphological operators has many advantages such as: high computation speed, being invariant to several geometrical transformations like translation, rotations, and scaling, and being able to extract all areas containing text. After extracting text candidate regions, a set of nine features are extracted for accurate detection and deletion of the regions that don't have text. These features are descriptors for texture properties and are computed in real time. Then, we use a SVM classifier to detect the existence of text in the region. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملColor Landmark Based Self-Localization for Indoor Mobile Robots
We present a simple artificial landmark model and a robust tracking algorithm for the navigation of indoor mobile robots. The landmark model is designed to have a three-dimensional structure consisting of a multicolored planar pattern. A stochastic algorithm based on Condensation [1] tracks the landmark model robustly using the color distribution of the pattern . A new selflocalization algorith...
متن کاملIndoor Localization Techniques based on Wireless Sensor Networks
Indoor localization is one of the most important problems in intelligent service robots, and home and office automation. For mobile robot navigation usually vision-based image processing techniques and dead-reckoning techniques based on inertial navigation systems have been used. These traditional technologies however have revealed many problems in actual applications. Vision-based image proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.09634 شماره
صفحات -
تاریخ انتشار 2017